
janos.toth@recognaise.com 

 

 

CIGRE 2025 International Symposium 
Palais des Congrès de Montréal, Québec, Canada 

September 29 to October 3, 2025 

 
 
 

10313 
B2 OVERHEAD LINES 

PS1 Application of Technologies, Information Technology (IT) and Artificial 
Intelligence (AI) 

 
Artificial Intelligence (AI) Driven Knowledge Management for Sustained 

Expertise in Electrical Transmission Line Engineering 
 

Janos TOTH* Balint NEMETH Levente RACZ 

RecognAIse Technologies 
Budapest University of 

Technology and Economics 

Budapest University of 

Technology and Economics 

Canada Hungary Hungary 

janos.toth@recognaise.com nemeth.balint@vik.bme.hu racz.levente@vik.bme.hu 

SUMMARY 

The paper addresses the critical issue of knowledge management in electrical transmission line 

engineering, emphasizing the challenges posed by an aging workforce and the increasing 

complexity of power systems. It explores how Artificial Intelligence (AI), particularly Large 

Language Models (LLMs), can be leveraged to capture, synthesize, and disseminate complex 

technical knowledge. The authors propose an AI-driven knowledge management system and 

evaluate its capabilities using the Gemma 27B model. The evaluation involves training the 

model with CIGRE B2 brochures and assessing its performance in answering questions of 

varying difficulty levels, simulating early, mid, and senior-career engineers. The results 

demonstrate that the AI model, post-training, exhibits a significant improvement in providing 

detailed, accurate, and practically applicable information, highlighting its potential to enhance 

knowledge sharing and decision-making in the power system industry. 
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1 Introduction 

The electrical grid is often called "the most complicated machine we have ever built" [1]. While 

this may sound like a general statement, it effectively captures the critical importance of the 

electricity system in the 21st century. The power grid forms the backbone of modern civilization, 

comprising a vast, interconnected network of power generation, transmission, and distribution 

systems. 

At the heart of this infrastructure lies the transmission line system. The design, construction, 

operation, and maintenance of transmission lines are highly complex and demanding tasks, 

essential to ensuring the reliable delivery of electric power [2]. Much of today’s power system 

infrastructure was initially constructed during the 20th century, providing a strong foundation 

for current operations. However, the increasing age of these assets, coupled with new 

operational challenges, raises several pressing questions: 

• What specific knowledge is necessary to operate, upgrade, and sustain the grid? 

• Will there be a sufficient number of designers, operators, and linemen to meet future 

demands? 

• How can the industry best preserve and access its accumulated expertise? 

• What have been the most effective knowledge management practices in the past, and 

how might they evolve in the future? 

Even the operation of power lines, which at first glance appears as a purely technical task, 

demands a vast range of interdisciplinary expertise [3]. Transmission line engineering in this 

context extends beyond traditional engineering education, encompassing electrical, mechanical, 

civil, structural, and material sciences, while also involving specialists such as foresters, legal 

advisors, economists, and public relations experts [3]. Similar complex systems have already 

been built, pushing humanity to recognize the need for systematic knowledge management. 

Early historical examples include the book collections of Mesopotamia around 2500 BC, the 

libraries of ancient Greece, and the famed Library of Alexandria, each highlighting the timeless 

importance of gathering, preserving, and transmitting knowledge (Figure 1) [4]. 

 
Figure 1 – Knowledge management in the past: Books from ancient Mesopotamia (left) [5]; 

Library of Alexandria (right) [6] 

 

The modern era introduced new possibilities. The development of expert systems during the 

early computer age sought to capture and automate expertise. Today, advances in Artificial 
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Intelligence - particularly the rise of Large Language Models - offer powerful tools for 

capturing, synthesizing, and disseminating complex technical knowledge in dynamic and 

accessible ways. The questions are when and how we can exploit these technical opportunities. 

1.1 The Aging Workforce in High-Voltage Engineering 

Knowledge continuity has become a critical priority in power engineering. Two key facts 

highlight the urgency: 

• In the United States, 31% of service engineers are over 55. As these professionals retire, 

the risk of losing specialized expertise grows rapidly, particularly in high-voltage 

engineering [6]. 

• A global survey of 17,000 energy professionals found that 46% identified the aging 

workforce and skill shortages as the industry's most pressing issue, with particular 

concern in the United Kingdom [8]. 

The sector faces a dual challenge: an aging workforce and a hiring gap. Knowledge in power 

line engineering is traditionally gained through decades of hands-on experience, often under 

the mentorship of senior professionals [9]. Much of this expertise remains undocumented, 

residing informally in individuals' experience rather than structured manuals or databases. This 

creates a serious risk: transmission lines, designed to operate for over 50 years, often outlast a 

single professional career. Without systematic transfer, essential knowledge about system 

details, operational challenges, and specific solutions risks being lost. Workforce mobility - 

whether from retirement or changing roles - further accelerates knowledge erosion. 

Additionally, regions like North America experienced limited hiring during the 1980s and 

1990s, creating generational gaps within the electrical industry. Similar trends have been 

observed globally. 

Without proactive knowledge management, the loss of essential skills is inevitable. The 

question is how industry can deploy scalable, efficient solutions to safeguard its technical 

legacy and prepare for the future. 

1.2 Knowledge Management: From Future Challenge to Present Need 

In response to the growing knowledge, some companies have developed structured programs 

to capture the expertise of departing employees, even employing oral historians to preserve 

critical information [9]. This highlights the need for a systematic approach to Knowledge 

Management (KM). Knowledge Management is the structured process of creating, organizing, 

sharing, and utilizing knowledge to achieve organizational goals, improve decision-making, 

and enhance performance. In electrical transmission lines, this knowledge includes a broad 

spectrum of specialized expertise, which can be broadly categorized, as shown in Figure 2. 

In essence, knowledge in transmission line engineering is a dynamic mix of theoretical 

understanding, practical experience, and operational expertise. Continuous learning, adaptation 

to new technologies, and evolving regulatory frameworks are vital for ensuring grid 

effectiveness and sustainability. Capturing and effectively using this wide range of knowledge 

is essential for maintaining continuity, improving operational performance, and enhancing grid 
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reliability. While knowledge management concepts and computer-based systems were explored 

decades ago, the electrical utility sector has yet to adopt a practical, scalable solution widely. 

 
Figure 2 – Types of knowledge in power line engineering 

 

One of the main challenges in establishing a classical knowledge management system in the 

power industry is the lack of properly documented knowledge. There is often a significant gap 

between field experience and what is formally recorded in this field. Much of the critical 

expertise resides with individuals rather than within company-owned resources, making it 

vulnerable to loss. Additionally, this knowledge is sensitive and cannot be shared on public or 

unsecured platforms. Therefore, new, adaptive solutions are required - approaches that not only 

address the technical aspects but also capture the broad spectrum of knowledge types essential 

for the sustainable operation of the electrical grid. Such systems must prioritize security, 

accessibility, and the practical realities of knowledge creation and transfer within the industry. 

2 Proposed Solution: AI-driven Knowledge Retention 

Over the last decade, Artificial Intelligence-based (AI-based) solutions have become key in 

applying complex, adaptive systems [10]. AI is the simulation of human intelligence in 

machines programmed to perform tasks typically requiring human cognition. These tasks 

include learning, reasoning, problem-solving, perception, understanding natural language, and 

decision-making. AI systems are designed to analyze data, recognize patterns, and make 

predictions or decisions with varying degrees of autonomy [10]. A critical representation of this 

could be the AI-based knowledge management system. 

2.1 AI-driven solutions in High Voltage Engineering 

Although the power system industry is a rather conservative sector, AI-supported solutions have 

already appeared, even in the Community of CIGRE B2. CIGRE Working Group B2.93 was 

established to address the emerging challenges and opportunities related to using Artificial 

Intelligence (AI) for power line asset management, focusing on transmission lines (Figure 3) 

[11]. Its core mission is to explore, evaluate, and promote AI-based methods to enhance 

overhead line inspection, maintenance, and operational efficiency. The group was formed in 

response to the increasing complexity of transmission systems, the aging workforce, and the 

growing demand for smarter, more resilient grid operations. A key goal is to provide a 
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structured framework for integrating AI technologies into asset management practices, such as 

image recognition, machine learning, and data analytics.  

 
Figure 3 – AI-augmented power line diagnostic system from North America [12] 

 

Such working groups show a growing interest in using applied AI models and exploiting the 

opportunities offered by technology in high-voltage and power systems. 

2.2 Large Language Models in Technical Fields 

The rapid advancement of Artificial Intelligence (AI), particularly in Large Language Models 

(LLMs) and multimodal systems, presents transformative opportunities for addressing key 

challenges in the power industry, especially those related to knowledge management. These 

technologies enable the seamless integration of textual, visual, and contextual data into unified 

frameworks capable of capturing and organizing intricate, domain-specific knowledge with 

greater precision and efficiency [10]. Due to their natural capabilities, LLMs can support 

employees by assisting with technical inquiries, enhancing decision-making, and serving as 

robust platforms for managing and distributing knowledge across organizations. 

However, significant challenges remain. One primary concern is the sensitive nature of utility-

specific knowledge, which often cannot be made public. This precludes the straightforward use 

of publicly available AI platforms trained on proprietary data. A practical solution must include 

a secure, multi-layered system that protects access and knowledge. Furthermore, while LLMs 

have reached impressive levels of capability, they have not achieved general intelligence and 

therefore cannot fully replace human expertise. Nevertheless, an AI-augmented knowledge 

management system could be a powerful extension of human capability, functioning as a fast, 

accessible technical library. Although an AI solution will not replace engineers at this stage, it 

can substantially improve knowledge sharing, support better decision-making, and strengthen 

operational resilience across the power system industry. 

3 Methodology 

A technical topic was first chosen to demonstrate the LLM model’s capabilities. Line uprating, 

specifically the transition from Aluminum Conductor Steel Reinforced (ASCR) to High-

Temperature Low-Sag (HTLS) conductors, is a widely adopted practice globally [13]. This 

transition is essential for enhancing the capacity and efficiency of existing transmission lines. 
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However, practical experience with HTLS conductors varies by region, with Central Europe 

frequently conducting evaluation projects to assess their viability. 

3.1 Input Data Preparation and Concept 

To ensure a comprehensive understanding of the topic, a set of transmission line knowledge 

shall be collected in the field of HTLS conductors. At this stage of the demonstration only 

written materials were used. To have adequate and replicable AI training, the CIGRE B2 

committee's published brochures (5 pieces) were selected as the primary data set. These 

brochures are recognized for their reliable and technically sound information, making them an 

ideal source for training the AI model. These documents were chosen based on the availability 

of appropriate transmission line knowledge. An additional criterion was that the AI model had 

not been previously trained with this data set, ensuring unbiased learning.  

The concept of the demonstration has 3 main steps as follows. 

• Initial Evaluation (pre-training): 

o Questions were formulated based on the content of the selected brochures. 

o The AI model, untrained on the specific data set, was asked these questions, and 

the responses were recorded. 

• AI Training: 

o The AI model was trained using the CIGRE B2 brochures, which were input as 

text-searchable PDF files. 

o This training aimed to enhance the AI's knowledge of the domain, enabling it to 

provide more accurate and informed responses. 

• Post-Training Evaluation: 

o The same set of questions was asked again after the AI had been trained with the 

brochures. 

o The responses were compared to those given before the training to assess the 

improvement in the AI's knowledge and understanding. 

This kind of demonstration can highlight the AI's ability to learn from the input data and 

formulate knowledge based on that input. This process underscored the importance of providing 

accurate and truthful information for AI training. 

3.2 Applied AI model and infrastructure 

The Gemma 27B model was selected for this project's Artificial Intelligence testing [14][15]. 

This decision was made following the introduction of Gemma 3 on March 12, 2025, as it 

represents a significant leap forward in open-weight large language models. Boasting 27 billion 

parameters, Gemma 3 builds upon the research and technology of the Gemini models, achieving 

state-of-the-art performance across numerous benchmarks [16]. A key advancement is its 

enhanced multimodality, allowing it to process text and image inputs and generate text outputs. 

Furthermore, the larger versions feature an expanded context window of up to 128,000 tokens, 

enabling the processing of longer documents and more complex reasoning tasks. With support 

for over 140 languages, Gemma 3's robust multilingual capabilities make it a versatile tool for 
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a wide range of global applications, including text generation, image understanding, and 

multimodal reasoning [14][16]. 

 
Figure 4 – Summary of the performance of different pre-trained models from Gemma 2 and 3 

across general abilities (left); Gemma 3 27B is in the Pareto sweet spot (right) [14] 

 

It is worth mentioning that the Gemma 3 model has a high Elo score while using less than 50 

billion parameters (Figure 4). Adapted from chess, the Elo score ranks models by their relative 

performance in AI evaluation. It is calculated from pairwise comparisons, where models 

"compete" against each other. A higher Elo score indicates a stronger model, and the system 

updates scores dynamically as new comparisons are made, providing an evolving measure of 

model performance. The interface for interacting with the model is text-based. In this mode of 

communication, all input is in the form of typed text, and all responses are generated as text. 

This allows for a direct and focused exchange of information through written language. 

Gemma 3 can also run on a powerful personal computer. Thus, the system can operate 

independently from the Internet and can be fully secured for privacy, data protection, and 

physical security reasons. A desktop computer was used for the AI evaluation with the 

following characteristics:  

• Operating System: Microsoft Windows 10 Professional, System type x-64, 

• Processor: AMD Ryzen, Threadripper, 2920X, 12 Core processor, 3500 MHz, 12 

Cores, 24 Logical processors,  24 Logical Processors 

• Physical Memory (RAM): 64 GB 

• Two NVIDIA GeForce RTX 2080 Ti (with 11 GB of Graphical Memory) 

Graphics cards 

3.3 Evaluation framework 

The evaluation concept involves designing questions across three technical levels to test the 

model’s understanding. The model is assessed both before and after domain-specific training. 

The responses are then systematically evaluated to measure accuracy, depth, and technical 

relevance improvements. We will simulate three distinct groups of electrical engineers based 

on their experience levels (Table 1): 

• Early-career engineers (1-3 years of experience) 
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• Mid-career engineers (4-10 years of experience) 

• Senior engineers (10+ years of experience) 

Each group faces questions tailored to their expected knowledge and expertise. By structuring 

the evaluation this way, we can determine how well the AI performs in simulating knowledge 

retention, reasoning, and decision-making at various levels of professional development. 

Table 1 – Example questions raised to the AI model in the evaluation phase 

Group type Experience Question 

Early-career 

engineer 
1-3 years 

Q1 - What are the benefits of using high-temperature low-sag 

(HTLS) conductors in line uprating? 

Mid-career 

engineer 
4-9 years 

Q2 - How do different HTLS conductor types compare in 

terms of thermal expansion and sag performance? 

Senior 

engineer 
10+ years 

Q3 - How do long-term aging effects (e.g., creep, fatigue, 

oxidation) influence the reliability of HTLS conductors in 

high-voltage power lines? 

 

Analyzing the AI model performance for these dedicated Groups raises several benefits in the 

evaluation phase: 

• Realistic Benchmarking: The AI's performance can be compared against typical human 

responses at different career stages, clearly assessing strengths and gaps. 

• Progressive Difficulty: By structuring questions according to experience, we ensure that 

the AI's reasoning is tested in foundational and advanced knowledge areas. 

• Practical Application: Engineers at different levels contribute differently to projects. 

Testing across experience groups helps determine if the AI can provide valuable insights 

for junior engineers learning the field and senior engineers making strategic decisions. 

4 Results 

The operation of the Gemma 3 27B LLM AI model was analyzed in 11 questions, for which 

the model produced nearly 40-45 pages of response documents both before and after training. 

This chapter presents the results for only one selected question from each category (Table 1). 

4.1 Pre-Training vs Post-Training AI Performance 

The model provided technically correct answers for the early-career engineer question (Q1) as 

presented in Table 2. It shows that the post-trained model provided more technical details and 

specific information than the pre-trained model. The most significant differences are listed 

below. 

Cost-Effectiveness: The pre-trained model generally mentioned that using HTLS conductors 

is cheaper than building new lines. The post-trained model explained specific cost savings, such 

as replacing old conductors, upgrading insulators, and making minor hardware adjustments. 

Reduced Sag: The pre-trained model generally mentioned that HTLS conductors have lower 

sag at higher temperatures. The post-trained model explained in detail how the materials and 
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construction techniques of HTLS conductors minimize thermal expansion and why reducing 

sag is essential for maintaining ground clearance. 

System Reliability: The pre-trained model mentioned that HTLS conductors increase grid 

reliability. The post-trained model provided detailed explanations of how HTLS conductors 

reduce line losses and increase system capacity, improving the handling of peak loads and 

integrating renewable energy sources. 

Environmental Benefits: The pre-trained model detailed that HTLS conductors are more 

environmentally friendly than building new lines. The post-trained model explained how HTLS 

conductor installations reduce land impact, energy consumption, and carbon emissions. 

Types of HTLS Conductors: The pre-trained model listed some HTLS conductors. 

The post-trained model provided detailed descriptions of specific HTLS conductor types, such 

as ACSS, ACCR, and ACPR, and their characteristics. 

Limitations and Considerations: The pre-trained model mentioned compatibility and 

temperature issues. The post-trained model explained insulator and hardware compatibility 

issues, sag calculations, and the thermal impact on nearby lines. 

Table 2 – LLM AI model answers for Q1 - What are the benefits of using high-temperature 

low-sag (HTLS) conductors in line uprating? 

Pre-training Post training 

The model provided a broad overview of the 

benefits of using HTLS conductors for line 

uprating, highlighting key advantages such 

as increased ampacity, reduced sag, cost-

effectiveness, and environmental benefits. It 

offered a good introduction to the topic but 

lacked detailed technical explanations and 

specific examples. 

The model offered a more comprehensive 

and detailed analysis of HTLS conductors, 

including specific cost-saving measures, 

technical aspects of reduced sag, and 

detailed descriptions of different types of 

HTLS conductors. It provided a deeper 

understanding of the subject, making it more 

informative for those seeking technical 

insights. 

 

Due to the paper's length constraints, a detailed explanation of the models is not provided here 

for the mid-career and senior engineer questions (Q2 and Q3). 

For Q2, the pre-trained model provided a detailed comparison of HTLS conductor types, 

focusing on their thermal expansion and sag performance. It explained key concepts such as 

CTE, creep, and sag performance, and offers a comprehensive analysis of ACCC, ACSS, and 

INVAR conductors, including their advantages and disadvantages. The post-trained model also 

thoroughly compared HTLS conductor types, emphasizing their thermal expansion, sag 

performance, and creep rate. It provided specific details about the materials and construction of 

ACCC, ACSS, and INVAR conductors, and includes a summary table for easy reference. While 

both answers were technically detailed, the post-trained model provided a more structured and 

concise summary, making it easier to compare the conductor types at a glance. Pre-trained 

model offered a broader explanation of key concepts, which can help understand the technical 

nuances. 
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For Q3, the pre-trained model provided a broader explanation of key concepts and a 

comprehensive analysis of conductor types, including advantages and disadvantages. 

The post-trained model offered a more structured and concise summary, with specific numerical 

values and a focus on the direct impacts of thermal expansion and sag performance. It included 

practical considerations for choosing the right conductor. Both answers are technically detailed, 

but the post-trained one focused more on providing actionable insights and a clear comparison, 

making it easier to understand the differences between conductor types briefly. 

4.2 Early, Mid, and Professional-Level Answer Comparison 

Based on the analysis of the result, the pre-trained and post-trained models provided, the 

following experiences are worth noting. 

Improvement in Detail and Specificity: 

• Early-career level: The difference between the pre-trained and post-trained models 

is the most pronounced. The post-trained model provides significantly more detailed 

and specific information than the more general overview in the pre-trained model. 

This suggests that the AI model's training greatly enhanced its ability to provide 

comprehensive and technically detailed responses. 

• Mid-career level: Both answers are detailed, but the post-trained model is more 

structured and concise, making it easier to compare conductor types. The 

improvement here is in the clarity and organization of the information. 

• Senior Level: Both answers are thorough, but the post-trained model offers a more 

structured approach to mitigation strategies and practical steps for monitoring and 

maintenance. The improvement is in the practical application and actionable insights 

provided. 

Depth of Technical Understanding: The training appears to have significantly improved the 

AI model's depth of technical understanding. The post-trained model in all three questions 

demonstrates a better grasp of technical concepts and can explain them in more detail and with 

greater nuance. 

Practical Application and Recommendations: The AI model provided more useful 

recommendations and actionable insights after training. This is particularly evident in the 

Senior-Level answers, where the post-trained model emphasizes practical steps for monitoring 

and maintenance. However, it is recommended that an expert check the quality of the answers. 

Clarity and Organization: The trained AI (post-trained) model consistently provides more 

structured and organized responses. This makes the information easier to understand and 

compare, which is crucial for technical decision-making. 

Adaptation to Audience: The trained AI model seems better at tailoring its responses to the 

expected knowledge level of the audience. For example, in the early-level engineer question, 

the post-trained model provided a more comprehensive introduction to the topic, suitable for 

less experienced engineers. The training has significantly enhanced the AI model's ability to 

provide detailed, specific, and practically useful information. The improvements are most 

noticeable at the Early Level, where the difference in detail and specificity is most significant. 
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Still, they are also evident at the mid and senior levels regarding clarity, organization, and 

practical recommendations. 

5 Conclusion 

Based on the project summarized in this paper, the developed and evaluated AI-augmented 

knowledge management system effectively addresses many transmission line knowledge 

management challenges. The evaluation proves the system is capable, robust, secure, and user-

friendly. The authors suggest that the results encourage and support expanding the system for 

specific knowledge areas within transmission lines, like transmission structures, hardware, and 

system operation. 
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